BackgroundRespiratory alkalosis is one of many acid-base disorders found among critically ill patients. It is detected by ABG and electrolyte lev. Respiratory alkalosis is a medical condition in which increased respiration reduces the arterial levels of carbon dioxide that, in turn, elevates the blood pH. Respiratory alkalosis is a primary decrease in carbon dioxide partial pressure (P co2) with or without compensatory decrease in bicarbonate (HCO3 −); pH may.

Author: Shakajas Kaziran
Country: Panama
Language: English (Spanish)
Genre: Sex
Published (Last): 24 March 2014
Pages: 28
PDF File Size: 6.53 Mb
ePub File Size: 1.54 Mb
ISBN: 179-2-77194-318-7
Downloads: 30638
Price: Free* [*Free Regsitration Required]
Uploader: Digami

Nat Med ; Febrile seizures are frequent during early childhood, and prolonged complex febrile seizures are associated with an increased susceptibility to temporal lobe epilepsy. The pathophysiological consequences of febrile seizures have been extensively studied in rat pups exposed to hyperthermia. The mechanisms that trigger these seizures are unknown, however. A rise in brain pH is known to enhance neuronal excitability. Here we show that hyperthermia causes respiratory alkalosis in the immature brain, with a threshold of 0.

CO 2 also prevented two long-term effects of hyperthermic seizures in the hippocampus: The effects of hyperthermia were closely mimicked by intraperitoneal injection of bicarbonate. Our work indicates a mechanism for triggering hyperthermic seizures and suggests new strategies in the research and therapy of fever-related epileptic syndromes.

Fever represents a typical response to infection at all ages. However, only in young children is prolonged fever capable of inducing convulsions.

While febrile seizures are generally considered benign, there is emerging evidence that in certain cases they can lead to chronic epilepsy.

Several factors, such as altered phenotype of hyperpolarization-activated cyclic nucleotide-gated channels, altered hyperpolarization-activated cation current I henhanced endocannabinoid signaling, and mossy fiber sprouting, have been implicated in the mechanisms of increased neuronal excitability and of epilepsy following febrile seizures 1 — 3.

However, in order to prevent long-term pathophysiological sequela, it is important to understand the basic mechanisms that trigger febrile seizures per se and why febrile seizures usually only occur in pediatric population. Because fever is commonly associated with inflammation, inflammatory cytokines have been regarded as candidate mechanistic factors of febrile convulsions. However, data accumulated to date do not provide compelling evidence that inflammatory cytokines are directly involved in the development of febrile seizures.

Furthermore, inflammatory cytokines are expressed both in adult and in immature brain and have been shown to regulate adult epileptogenesis 7 ; thus, inflammatory alkalpsis alone cannot explain age specificity or, consequently, the mechanisms of febrile convulsions. Two features of febrile seizures—rapid onset and age selectivity—suggest that certain highly reactive mechanisms specific for the immature age are responsible for their occurrence and progression.


Respiratory Alkalosis: “Basic” Mechanism of Febrile Seizures?

Schuchmann and colleagues focused their study on the examination of these mechanisms. The authors exploited the well-established fact that fever is commonly accompanied by compensatory hyperventilation, which in turn might lead to an alkaline shift in pH as a result of a decrease in the partial pressure of CO 2.

At the same time, elevated brain pH is known to enhance neuronal excitability. Schuchmann and coworkers performed a series of elegant experiments designed to connect the dots and identify mechanisms that may underlie the occurrence of febrile seizures.

Rwspiratorik compared behavioral, electrographic, physiologic, and chemical responses to hyperthermia induced in immature rats of two ages: These observations were followed by simple, yet impressive, experiments.

The authors showed that by directly elevating pH to the same rwspiratorik as induced by hyperthermia using systemic injection of bicarbonatebehavioral and EEG seizures could be readily induced in 8- to day-old rats.

However, they did not examine whether a tespiratorik injection of bicarbonate to 3-week-old animals would have failed to induce alkalinization and seizures; such an experiment would have further validated their hypothesis. One logical conclusion and practical implication of the findings of Schuchmann and coworkers is that normalizing partial pressure of CO 2 may be effective in blocking febrile convulsions in rat pups.

Even more remarkably, long-term consequences of febrile seizures, such as upregulation of I h current and overexpression of cannabinoid receptors, were prevented by the CO 2 therapy. Although the wlkalosis did not explore whether such treatment also blocked long-term enhanced excitability and predisposition to seizures which would make their findings even more excitingthey showed that apparent substrates of postfebrile seizure-induced epileptogenesis were blocked.

The question of why younger animals, compared to older animals, developed more respiratori hyperventilation that was sufficient to raise pH to the seizure-inducing level was not directly addressed in the experiments. However, it has been established that the lowest ontogenic chemosensitivity to CO 2 occurs in rats around postnatal day 10, which is precisely when febrile seizures occur.

Hence, central feedback mechanisms that control respiratory rate based on the partial pressure of CO 2 are not mature in younger animals. The inability to keep CO 2 concentration within physiological parameters might eventually lead to tissue alkalinization and qlkalosis to seizures. The importance of these studies also might extend beyond an understanding of the mechanisms of febrile seizures.


While respiratory alkalosis appears to be age- and model specific, it is quite possible that shifts in brain pH, in general, could play an important role at various ages and in other types of epilepsy. Accordingly, it has been shown alkalozis a focal increase in pH in chronic epileptic alkalosiz animals is associated with the generation of spontaneous interictal spikes and could contribute to the interictal—ictal transition 8. Therefore, when superimposed on chronically modified neuronal circuits in the epileptic brain, the momentary alkalinization that occurs as a result of normal variations in pH might be a mechanism by which individual seizures alialosis triggered in epileptic patients.

In this regard, hyperventilation alkaalosis long known to induce interictal spikes and is commonly used for the EEG diagnosis of epilepsy. Furthermore, carbonic anhydrase inhibitors, such as acetazolamide, are known to exert anticonvulsant effects 9. Clearly, the findings of Schuchmann and colleagues offer important basic and translational implications.

If proven true in the clinical environment, these data could provide a simple, safe, and effective resoiratorik for febrile seizures in infants, with both immediate and long-term benefits.

National Center for Biotechnology InformationU. Journal List Epilepsy Curr v.

respiratory alkalosis – Wikidata

Copyright and License information Disclaimer. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability.

Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Increased frequency of interleukin-1beta allele 2 in febrile seizures. Interleukin-1alpha, interleukin-1beta, and interleukin-1Ra polymorphisms in febrile seizures.

Interleukin-1 beta contributes to the generation of experimental febrile seizures. Functional role of proinflammatory and anti-inflammatory cytokines in seizures. Adv Exp Med Biol. Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis.

Support Center Support Center. Please review our privacy policy.